Unsupervised Anomaly Detection for Discrete Sequence Healthcare Data
نویسندگان
چکیده
Fraud in healthcare is widespread, as doctors could prescribe unnecessary treatments to increase bills. Insurance companies want detect these anomalous fraudulent bills and reduce their losses. Traditional fraud detection methods use expert rules manual data processing. Recently, machine learning techniques automate this process, but hand-labeled extremely costly usually out of date. We propose a model that automates an unsupervised way. Two deep approaches include LSTM neural network for prediction next patient visit seq2seq model. For normalization produced anomaly scores, we Empirical Distribution Function (EDF) approach. So, the algorithm works with high class imbalance problems.
منابع مشابه
A Novel Method for Unsupervised Anomaly Detection Using Unlabelled Data
Most current intrusion detection methods cannot process large amounts of audit data for real-time operation. In this paper, anomaly network intrusion detection method based on Principal Component Analysis (PCA) for data reduction and Fuzzy Adaptive Resonance Theory (Fuzzy ART) for classifier is presented. Moreover, PCA is applied to reduce the high dimensional data vectors and distance between ...
متن کاملAnomaly and Event Detection for Unsupervised Athlete Performance Data
There are many projects today where data is collected automatically to provide input for various data mining algorithms. A problem with freshly generated datasets is their unsupervised nature, leading to difficulty in fitting predictive algorithms without substantial manual effort. One of the first steps in dataset preparation and mining is anomaly detection, where clear anomalies and outliers ...
متن کاملUnsupervised Anomaly Detection
This paper describes work on the detection of anomalous material in text. We show several variants of an automatic technique for identifying an 'unusual' segment within a document, and consider texts which are unusual because of author, genre [Biber, 1998], topic or emotional tone. We evaluate the technique using many experiments over large document collections, created to contain randomly inse...
متن کاملA Bayesian Ensemble for Unsupervised Anomaly Detection
Methods for unsupervised anomaly detection suffer from the fact that the data is unlabeled, making it difficult to assess the optimality of detection algorithms. Ensemble learning has shown exceptional results in classification and clustering problems, but has not seen as much research in the context of outlier detection. Existing methods focus on combining output scores of individual detectors...
متن کاملUnsupervised Clustering Approach for Network Anomaly Detection
This paper describes the advantages of using the anomaly detection approach over the misuse detection technique in detecting unknown network intrusions or attacks. It also investigates the performance of various clustering algorithms when applied to anomaly detection. Five different clustering algorithms: k-Means, improved k-Means, k-Medoids, EM clustering and distance-based outlier detection a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-72610-2_30